GRADE 10 - QUARTER 1 - MODULE 4

Posted by Takards on September 02, 2024 with No comments

 

Lesson 1: The nth Term of Geometric Sequence

 What is it

 

The nth term of a geometric sequence is an = a1r n-1

 

Example 1:  Find the tenth term of the geometric sequence 1, -4, 16, -64, …

Solution:                       a1 = 1;               r = -4;               n = 10

       an = a1 r n-1

                   a10 = 1(-4)10-1                                     Substitute with the given information

                   a10 = 1(-4)9                         Simplify the exponent  

                   a10 = 1(-262, 144)               Simplify (-4 (-4 (-4 (-4 (-4 (-4 -4 -4 (-4)

                  a10 = -262, 144                     Simplify

Therefore the 10th term is -262, 144.

 

Example 2: A certain substance decomposes and loses 20% of its weight each hour.  If the original quantity of the substance is 500 grams, how much remains after 8 hours?

 

Solution:  In this geometric sequence, a1 = 500 and r = 0.80 (100% - 20% = 80% or 0.80).  We are asked to find the amount remaining after 8 hours.  Thus, we must find the amount remaining at the beginning of the 9th hour.

                                    a1 = 500,                       r = 0.80,                                   n = 9

                        an = a1r n-1

                        a9 = (500)(0.80)9-1                     Substitute with the given information

a9 = (500)(0.80)8                      

                        a9 = 83.88 grams                       Simplify using PEMDAS rule   

 

What’s More

 

 

Answer the following:

1)  Find the 7th term of the geometric sequence with a1 = 3 and r = 5

2)  A machine costing P1,000,000 depreciates in value 20 percent each year.  How much will it be worth at the end of 4 years?

 

Lesson 2: Geometric Means

 

What is it

A)  Geometric means are the terms between any two nonconsecutive terms in a geometric sequence.  If the numbers a1, a2, a3…., an form a geometric sequence, the a2, a3…., an-1 are called geometric means between a1 and an. Thus, the formula to be used is

an = a1 r n-1

B) Let m be the geometric mean between two numbers a and b, so that a, m and b form a geometric sequence, so that

                                                 =   or m2 = ab or m =    

Example 1:  Insert three geometric means between 5 and 3125.

Solution:  Let a1 = 5 and a5 = 3125.  We will insert a2, a3, and a4.

                          a5 = a1r n-1

                       3125 = 5r 5-1        Substitute

                       3125 = 5r4                 Simplify the exponent

             625 = r 4           Divide by 5 on both sides

                          54 = r 4            Rewrite the base 625 into a power of 4 (625= 5 5 5 5 = 54)

                             r = 5          Therefore the ratio is 5 since both satisfy the equation.

 

If r = 5, the geometric means are a2 = 5(5) = 25,   a3 = 5(25) = 125,   a4 = 5(125) = 625 

Thus, the sequence is 5, 25, 125, 625, 3125.

 

If r = -5 then the geometric means are: a2= -5(5) = -25a3 = -5(-25) =125, a4 = -5(125) = -625

Thus, the sequence is 5, -25, 125, -625, 3125.

 

Example 2:       Find the geometric mean between 4 and 36.

Solution:           a = 4,               b = 36

                        m =                Substitute

                        m =                      Simplify

                        m = 12                           Extract the root

Therefore, the geometric mean between 4 and 36 is 12.

Note: The geometric mean between two numbers a and b is

 if a and b are positive

-  if a and b are negative.

 

What’s More

Answer the following.

1)  Insert three geometric means between 16 and 1296.

2)  Find the geometric mean between 10 and  1/10.

Lesson 3: Sum of a Finite and Infinite Geometric Sequence.                

 What is it                 

Finite sequence if it has a first term and a last term.

The formula for the sum of the first n-terms in a geometric sequence is               


                        

                                                   Where:  Sn = sum

                                                                 a1 = the first term

                                                              r = the common ratio, r .

Example 1:       Find the sum of the first 5 terms of 3, 6, 12, 24, …

Solution:            n = 5 ;              a1 = 3;              r = 2                            

                         Sn            

                        S5  =              Substitute with the given information

                            S5 =             Simplify using PEMDAS rule  

                            S5 = 93                       Therefore the sum of the first 5 terms of 3, 6, 12, 24, … is 93.

 

Example 2:  Find the sum of the sequence -5, -10, -20, -40, … until a6?

Solution:           n = 6                a1 = -5;             r = -2

                        Sn              

                       S5  =              Substitute

                           S5 =               Simplify using PEMDAS rule  

                          S5 = -315                                 Therefore the sum is -315

The sum S of the terms of an infinite geometric sequence is

S =   

 

                                    where a1 = the first term

                                                 r = the common ratio, and  / r / < 1.

 

Example 1:       Find the sum of 64+ 32+16+ …            

Solution:             a1 = 64;                       r = ½

S

            S                        Substitute with the given information

S =                        Simplify

S = 128                       Therefore the sum is 128.

Example 2:  Find the sum of  + , …

Solution:                     



What’s More

           

Solve the following.

1) The sum of the first 5 terms of the geometric sequence 4, 12, 36, 108, …

          2)  The sum of the infinite geometric sequence 64, 16, 4, 1, …

 

 

Assessment

 

Directions: Read and understand the problems carefully. Write your answer on the answer sheet

                        provided for you. STRICTLY NO ERASURE.

 

 

1.  Which of the following describes a finite geometric sequence.

            A.  It has infinite number of terms          C. The sum of terms does not exist sometimes

            B.  It has n terms                                   D.  It has set of even integers

2.  Find the geometric mean of 3 and 48.

            A.  6                             B.  12                           C.  24                           D.  26

3.  Find the sum of the infinite geometric sequence  , …

                        A. -1                             B.                               C.  1                             D.  2

4.  Find the sum of the first 10 terms of the geometric sequence 3, -6, 12, -24, …

                        A. -3609                       B.  -1024                      C.  -1023                      D.  3609

            5.  Find the 7th term of the geometric sequence 1, 3, 9, …

                        A.  729                         B.  2187                        C.  1093                        D.  3280

            6.  The sum of the first 11 terms of the progression 2, -2, 2, -2 ….is

                        A.  -2                            B.  0                             C.  2                             D.  22

            7.  If the series has an infinite number of terms, then it is _________.

                        A.  an infinite sequence             C.  a finite series

                        B.  a series                                D.  a function

            8.  The geometric mean of two numbers is equal to the ______________.

                        A.  square root of the product of the two numbers

                        B.  difference of the two numbers

                        C.  product of the two numbers

                        D.  quotient of the two numbers

9.  If each bacterium divides into 4 bacteria every hour, how many bacteria will be present at the end of 5 hours if there are 4 bacteria at the start?

            A.  64                           B.  256                         C.  1024                        D.  4096

10.  Find the geometric mean between  and .

            A.                            B.                            C.                              D.  

 

0 comments:

Post a Comment